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1 The Divergence Theorem



The Divergence Theorem
Let S be a closed surface that encloses a solid W in R3. Assume that S
is piecewise smooth and is oriented by normal vectors pointing outside
W. Let F⃗ be a vector field whose domain contains W. Then:‹

S
F⃗ · d S⃗ =

˚
W

div(F⃗) dV .

Analogy: Adding up the amount of stuff supplied (+) or consumed
(−) by all nodes in a network equals the total amount of stuff
supplied to (+) or consumed from (−) outside the network.
The left-hand side measures the total flux outward through S —
that is, the amount of stuff supplied outside W.
The right-hand side is the integral over W of the amount of stuff
supplied by each point.

Video

https://mediahub.ku.edu/media/t/1_a5b047u9


The Divergence Theorem

Example 1: Find the flux of the vector field F⃗(x , y , z) = ⟨z , y , x⟩ out the
unit sphere S defined by x2 + y2 + z2 = 1.

Solution: Let W be the unit ball, so that S = ∂W. Here div(F⃗) = 1, so
by the Divergence Theorem,

‹
S

F⃗ · d S⃗ =

˚
W

div(F⃗) dV = volume(W) =
4π
3
.

The Divergence Theorem and Volume: If div(F⃗) is a constant c , then
‹

∂W
F⃗ · d S⃗ = c(volume(W))

for any solid region W (orienting its boundary with outward normals).



Example 2: Let F⃗(x , y , z) =
〈
xy , y2 + exz

2
, sin(xy)

〉
, and let S be the

surface of the solid W bounded by z = 1 − x2, z = 0, y = 0, and

y + z = 2. Evaluate
¨

S
F⃗ · d S⃗.

Solution: Parametrizing S would be
hard, but we can use the Divergence
Theorem.

The solid W consists of points (x , y , z)
such that

x ∈ [−1, 1];
0 ≤ y ≤ 2 − z ;
0 ≤ z ≤ 1 − x2.

x y

z

(0, 0, 1)

(1, 0, 0)
(0, 2, 0)

(1, 2, 0)

z = 1 − x2

z = 2 − y

Video

¨
S

F⃗ · d S⃗ =

˚
W

div(F⃗) dV =

ˆ 1

−1

ˆ 1−x2

0

ˆ 2−z

0
3y dy dz dx =

184
35

https://mediahub.ku.edu/media/t/1_46ow40ll


Changing the Surface of Integration
Example 3: A compressible (opposite of incompressible) fluid is flowing
through a net described by the equation S : z =

√
9 − x2 − y2 and oriented in

the positive z-direction. Determine the flow rate of the fluid across the net if
the velocity vector field for the fluid is given by and F⃗ = ⟨sin(y2), ln(x2 + 1), z⟩.
(Find

¨
S

F⃗ · d S⃗.)

Solution: The surface is the upper hemisphere of radius 3;
the surface integral is computationally complicated if directly
computed.
Alternative surface: We close the upper hemisphere with a
disk of radius 3 on xy -plane:
Snew : ⟨r cos(t), r sin(t), 0⟩ for 0 ≤ r ≤ 3 and 0 ≤ t ≤ 2π.

x y

z

Video

Link-Surfaces

The triple integral of the divergence of F⃗ over the solid entrapped between the
two surfaces

˚
W

Div(F⃗) dv is equal to the outward flux:

¨
S

F⃗ · d S⃗︸ ︷︷ ︸
Surface we want to find

+

¨
Snew

F⃗ · d S⃗︸ ︷︷ ︸
Alternative Surface

=

˚
W

=
∂ sin(y2)

∂x
+

∂ ln(x2+1)
∂y

+ ∂z
∂z

=1︷ ︸︸ ︷
Div(F⃗) dv︸ ︷︷ ︸˝
W 1 dv

https://mediahub.ku.edu/media/t/1_byl06o22
https://www.geogebra.org/m/mg8vmrkp


Example 3 (continued)
Compute the alternative surface integral minding that unit outward
normal to the disk is −k⃗ :
¨

Snew

F⃗ · d S⃗ =

¨
Dnew

⟨something, something, 0⟩︸ ︷︷ ︸
F⃗

· ⟨0, 0,−r⟩︸ ︷︷ ︸
−r k⃗

dA = 0

Compute the triple integral:
˚

W
Div(F⃗) dv =

ˆ 2π

0

ˆ π/2

0

ˆ 3

0
ρ2 sin(ϕ)︸ ︷︷ ︸

Jac

dρ dϕ dθ

=

ˆ 2π

0

ˆ π/2

0

ρ3

3

∣∣∣∣3
0
sin(ϕ)dϕ dθ

= 9
ˆ 2π

0
− cos(ϕ)

∣∣∣∣π
2

0
dθ = 18π

By Divergence Theorem:
¨

S
F⃗ · d S⃗︸ ︷︷ ︸

We want to find

+

¨
Snew

F⃗ · d S⃗︸ ︷︷ ︸
=0

=

˚
W

Div(F⃗) dv︸ ︷︷ ︸
=18π

So
¨

S
F⃗ · d S⃗ = 18π

Note that
¨
W

1 dv is equal to half the volume of a sphere with radius 3 and you don’t need to compute it.



Changing the Surface of Integration
Example 4 (The original was provided by
Prof. Martin): Define W, T ,S, F⃗ as follows:

W = octahedron with vertices at ±⃗i, ±⃗j,±k⃗
T = triangle with vertices i⃗, j⃗, k⃗
S = surface consisting of the other seven faces
of W, all oriented outwards

F⃗(x , y , z) = ⟨3x + 2y , x − 2y + 2z , −x + 4z⟩

Find
¨

S
F⃗ · d S⃗.

x

y

z

T

Solution: Integrating over S directly would be tiresome. Instead, use the
Divergence Theorem:

˚
W

∇ · F⃗ dV =

‹
∂W

F⃗ · d S⃗ =

¨
S

F⃗ · d S⃗ +

¨
T

F⃗ · d S⃗

¨
S

F⃗ · d S⃗ =

˚
W

∇ · F⃗ dV −
¨

T
F⃗ · d S⃗ (∗)



Changing the Surface of Integration
Example 4 (continued): First, calculate
˚

W
∇ · F⃗ dV =

˚
W

5 dV = 5 · volume(W) = 5 · 8
6

=
20
3

since slicing along the coordinate planes partitions W into eight
tetrahedra, each of base 1/2 and height 1, hence volume 1/6.

Second, T has normal vector ⟨1, 1, 1⟩ and is the graph of z = 1 − x − y
over the triangle in R2 bounded by x = 0, y = 0, x + y = 1, so

¨
T

F⃗ · d S⃗ =

ˆ 1

0

ˆ 1−y

0
F⃗(x , y , 2 − x − y) · ⟨1, 1, 1⟩ dy dx

=

ˆ 1

0

ˆ 1−y

0
(−2x − 6y + 5) dx dy =

11
2
.

So equation (∗) gives

¨
S

F⃗ · d S⃗ =
20
3

− 11
2

=
7
6
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