## Section 17.3 The Divergence Theorem

The Divergence Theorem
Examples, Computing Closed Surface Integrals Examples, Surface Integrals using Alternative Surfaces

1 The Divergence Theorem

## The Divergence Theorem

Let $\mathcal{S}$ be a closed surface that encloses a solid $\mathcal{W}$ in $\mathbb{R}^{3}$. Assume that $\mathcal{S}$ is piecewise smooth and is oriented by normal vectors pointing outside $\mathcal{W}$. Let $\overrightarrow{\mathrm{F}}$ be a vector field whose domain contains $\mathcal{W}$. Then:

$$
\oiint_{\mathcal{S}} \vec{F} \cdot d \vec{S}=\iiint_{\mathcal{W}} \operatorname{div}(\vec{F}) d V
$$

- Analogy: Adding up the amount of stuff supplied (+) or consumed $(-)$ by all nodes in a network equals the total amount of stuff supplied to $(+)$ or consumed from ( - ) outside the network.
- The left-hand side measures the total flux outward through $\mathcal{S}$ that is, the amount of stuff supplied outside $\mathcal{W}$.
- The right-hand side is the integral over $\mathcal{W}$ of the amount of stuff supplied by each point.


## The Divergence Theorem

Example 1: Find the flux of the vector field $\vec{F}(x, y, z)=\langle z, y, x\rangle$ out the unit sphere $\mathcal{S}$ defined by $x^{2}+y^{2}+z^{2}=1$.

Solution: Let $\mathcal{W}$ be the unit ball, so that $\mathcal{S}=\partial \mathcal{W}$. $\operatorname{Here} \operatorname{div}(\overrightarrow{\mathrm{F}})=1$, so by the Divergence Theorem,

$$
\oiint_{\mathcal{S}} \vec{F} \cdot d \overrightarrow{\mathrm{~S}}=\iiint_{\mathcal{W}} \operatorname{div}(\overrightarrow{\mathrm{F}}) d V=\text { volume }(\mathcal{W})=\frac{4 \pi}{3} .
$$

The Divergence Theorem and Volume: If $\operatorname{div}(\vec{F})$ is a constant $c$, then

$$
\oiint_{\partial \mathcal{W}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=c(\text { volume }(\mathcal{W}))
$$

for any solid region $\mathcal{W}$ (orienting its boundary with outward normals).

Example 2: Let $\vec{F}(x, y, z)=\left\langle x y, y^{2}+e^{x z^{2}}, \sin (x y)\right\rangle$, and let $\mathcal{S}$ be the surface of the solid $\mathcal{W}$ bounded by $z=1-x^{2}, z=0, y=0$, and $y+z=2$. Evaluate $\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}$.

Solution: Parametrizing $\mathcal{S}$ would be hard, but we can use the Divergence Theorem.

The solid $\mathcal{W}$ consists of points $(x, y, z)$ such that

- $x \in[-1,1]$;
- $0 \leq y \leq 2-z$;
- $0 \leq z \leq 1-x^{2}$.

- Video

$$
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iiint_{\mathcal{W}} \operatorname{div}(\overrightarrow{\mathrm{F}}) d V=\int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{2-z} 3 y d y d z d x=\frac{184}{35}
$$

## Changing the Surface of Integration

Example 3: A compressible (opposite of incompressible) fluid is flowing through a net described by the equation $\mathcal{S}: z=\sqrt{9-x^{2}-y^{2}}$ and oriented in the positive $z$-direction. Determine the flow rate of the fluid across the net if the velocity vector field for the fluid is given by and $\overrightarrow{\mathrm{F}}=\left\langle\sin \left(y^{2}\right), \ln \left(x^{2}+1\right), z\right\rangle$. (Find $\iint_{\mathcal{S}} \vec{F} \cdot d \overrightarrow{\mathrm{~S}}$.)

Solution: The surface is the upper hemisphere of radius 3; the surface integral is computationally complicated if directly computed.
Alternative surface: We close the upper hemisphere with a disk of radius 3 on $x y$-plane:
$\mathcal{S}_{\text {new }}:\langle r \cos (t), r \sin (t), 0\rangle$ for $0 \leq r \leq 3$ and $0 \leq t \leq 2 \pi$.
The triple integral of the divergence of $\vec{F}$ over the solid entrapped between the two surfaces $\iiint_{W} \operatorname{Div}(\vec{F}) d v$ is equal to the outward flux:

$$
\underbrace{\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}}_{\text {Surface we want to find }}+\underbrace{\iint_{\mathcal{S}_{\text {new }}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}}_{\text {Alternative Surface }}=\underbrace{\iiint_{\mathcal{W}} \underbrace{\frac{0 \partial \sin \left(y^{-}\right)}{\partial x}+\frac{\partial \ln \left(x^{2}+1\right)}{\partial y}+\frac{\partial z}{\partial z}=1}_{\operatorname{Div}(\overrightarrow{\mathrm{F}})}}_{\iiint_{\mathcal{W}} 1 d v}
$$

## Example 3 (continued)

Compute the alternative surface integral minding that unit outward normal to the disk is $-\vec{k}$ :
$\iint_{\mathcal{S}_{\text {new }}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{D}_{\text {new }}} \underbrace{\langle\text { something, something, } 0\rangle}_{\overrightarrow{\mathrm{F}}} \cdot \underbrace{\langle 0,0,-r\rangle}_{-r \vec{k}} d A=0$
Compute the triple integral: $\iiint_{\mathcal{W}} \operatorname{Div}(\overrightarrow{\mathrm{F}}) d v=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{3} \underbrace{\rho^{2} \sin (\phi)}_{\text {Jac }} d \rho d \phi d \theta$

$$
\begin{aligned}
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \frac{\rho^{3}}{3}\right|_{0} ^{3} \sin (\phi) d \phi d \theta \\
& =9 \int_{0}^{2 \pi}-\left.\cos (\phi)\right|_{0} ^{\frac{\pi}{2}} d \theta=18 \pi
\end{aligned}
$$

By Divergence Theorem: $\underbrace{\iint_{\mathcal{S}} \vec{F} \cdot d \vec{S}}_{\text {We want to find }}+\underbrace{\iint_{\mathcal{S}_{\text {new }}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}}_{=0}=\underbrace{\iiint_{\mathcal{W}} \operatorname{Div}(\overrightarrow{\mathrm{F}}) d v}_{=18 \pi}$

$$
\text { So } \iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=18 \pi
$$

Note that $\iint_{\mathcal{W}} 1 d v$ is equal to half the volume of a sphere with radius 3 and you don't need to compute it.

## Changing the Surface of Integration

## Example 4 (The original was provided by

Prof. Martin): Define $\mathcal{W}, \mathcal{T}, \mathcal{S}, \overrightarrow{\mathrm{F}}$ as follows:
$\mathcal{W}=$ octahedron with vertices at $\pm \vec{i}, \pm \vec{j}, \pm \vec{k}$
$\mathcal{T}=$ triangle with vertices $\vec{i}, \vec{j}, \vec{k}$
$\mathcal{S}=$ surface consisting of the other seven faces of $\mathcal{W}$, all oriented outwards
$\vec{F}(x, y, z)=\langle 3 x+2 y, x-2 y+2 z,-x+4 z\rangle$
Find $\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}$.


Solution: Integrating over $\mathcal{S}$ directly would be tiresome. Instead, use the Divergence Theorem:

$$
\begin{gather*}
\iiint_{\mathcal{W}} \nabla \cdot \overrightarrow{\mathrm{F}} d V=\oiint_{\partial \mathcal{W}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}+\iint_{\mathcal{T}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} \\
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iiint_{\mathcal{W}} \nabla \cdot \overrightarrow{\mathrm{F}} d V-\iint_{\mathcal{T}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} \tag{*}
\end{gather*}
$$

## Changing the Surface of Integration

Example 4 (continued): First, calculate

$$
\iiint_{\mathcal{W}} \nabla \cdot \vec{F} d V=\iiint_{\mathcal{W}} 5 d V=5 \cdot \operatorname{volume}(\mathcal{W})=5 \cdot \frac{8}{6}=\frac{20}{3}
$$

since slicing along the coordinate planes partitions $\mathcal{W}$ into eight tetrahedra, each of base $1 / 2$ and height 1 , hence volume $1 / 6$.

Second, $\mathcal{T}$ has normal vector $\langle 1,1,1\rangle$ and is the graph of $z=1-x-y$ over the triangle in $\mathbb{R}^{2}$ bounded by $x=0, y=0, x+y=1$, so

$$
\begin{aligned}
\iint_{\mathcal{T}} \vec{F} \cdot d \vec{S} & =\int_{0}^{1} \int_{0}^{1-y} \vec{F}(x, y, 2-x-y) \cdot\langle 1,1,1\rangle d y d x \\
& =\int_{0}^{1} \int_{0}^{1-y}(-2 x-6 y+5) d x d y=\frac{11}{2}
\end{aligned}
$$

So equation (*) gives

$$
\iint_{\mathcal{S}} \vec{F} \cdot d \vec{S}=\frac{20}{3}-\frac{11}{2}=\frac{7}{6}
$$

